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SUMMARY

A new implementation of surface tension e�ects in interfacial �ow codes is proposed which is both
fully implicit in space, that is the interface never has to be reconstructed, and also semi-implicit in
time, with semi-implicit referring to the time integration of the surface tension forces. The main idea is
to combine two previously separate techniques to yield a new expression for the capillary forces. The
�rst is the continuum surface force (CSF) method, which is used to regularize the discontinuous surface
tension force term. The regularization can be elegantly implemented with the use of distance functions,
which makes the level set method a suitable choice for the interface-tracking algorithm. The second is
to use a �nite element discretization together with the Laplace–Beltrami operator, which enables simple
reformulation of the surface tension term into its semi-implicit equivalent. The performance of the new
method is benchmarked against standard explicit methods, where it is shown that the new method
is signi�cantly more robust for the chosen test problems when the time steps exceed the numerical
capillary time step restriction. Some improvements are also found in the average number of nonlinear
iterations and linear multigrid steps taken while solving the momentum equations. Copyright ? 2005
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Various approaches exist for tracking interfaces while simulating interfacial �ow phenomena.
These range from explicit arbitrary Lagrangian–Eulerian (ALE) moving mesh algorithms to
fully implicit Eulerian �xed grid methods, with front tracking approaches usually falling some-
where in between. The Lagrangian advantage is the sharpness of the interface representation,
with the disadvantage of the added complexity of a moving grid=ALE code, which except
for rare cases is unable to handle complex merging and breaking of interfaces. The Eulerian
approach is the opposite side of the coin, that is ease of implementation but at the cost of
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660 S. HYSING

a sharp interface representation. Unfortunately most Eulerian approaches use some form of
interface tracking too where the interface location has to be found explicitly. Some examples
of this is calculating curvature in volume of �uid (VOF) simulations and redistancing in level
set codes.
Surface tension which is a major component of multiphase �ow codes is almost exclusively

implemented with explicit time integration. This has the drawback that the time step size is
limited by both the grid size and coe�cient of surface tension. This can potentially lead to
prohibitively costly simulations even for problems where capillary e�ects dominate and we
do not expect much distortion of the interface. Implicit and semi-implicit implementations do
not have this time step restriction allowing for more e�cient simulations.
In this paper we introduce a new method for interfacial �ow calculations which combines an

Eulerian approach with semi-implicit time integration of the surface tension forces. Section 2
presents the governing equations that we address and derives the new method. Section 3
brie�y describes the numerical algorithm in which the model is implemented and evaluates it
on three examples. Finally, Section 4 summarizes the evaluation of the new model and also
gives a brief outlook.

2. MODELLING OF SURFACE TENSION EFFECTS

When modelling and simulating �uid �ow with immiscible �uids, surface tension e�ects
generally play a great role in de�ning the physical behaviour. In the case of incompressible
�ow we have to solve the Navier–Stokes equations:

�(x)
(
@u
@t
+ (u · ∇)u

)
=−∇p+∇ · (�(x)(∇u+∇uT)) + �(x)g

∇ · u=0

in �⊂Rd, x∈� for varying density �(x) and viscosity �(x) �elds. Here g represents external
forces such as gravity.
At the d − 1-dimensional interface �⊂�, separating the di�erent �uids, the following

boundary conditions apply:

[u]|� =0; −[−pI+ �(∇u+∇uT)]|� · n̂=��n̂
where n̂ denotes the interface normal and [A]|� is the jump of property A across the interface.
These conditions imply continuity of the velocity across the interface and also a jump in
the normal stress proportional to the coe�cient of surface tension � and the curvature of the
interface �. The interface conditions may be rewritten as volumetric forces and then take the
form

fst =��n̂�(�;x) (1)

where �(�;x) is a Dirac delta function localizing the surface tension force to the interface
between the di�erent �uids. This immersed interface (or boundary) approach has its roots
in the early work on blood �ow by Peskin [1], and later its extensions to VOF calculations
with surface tension forces by Brackbill et al. [2] who dubbed it the continuum surface force
(CSF) method.
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2.1. Semi-implicit time integration

When working with the �nite element method we can employ partial integration to transform
the explicit calculation of the curvature to the test function space. This methodology was
introduced by Dziuk [3] and later applied to �ow calculations in the ALE framework by
B�ansch and coworkers [4–6], Sashikumaar and Tobiska [7], and Matthies [8]. Some work has
also been done in the context of Eulerian �xed grids; with level sets by Gro� et al. [9] and
with front tracking by Minev and coworkers [10].
In order to understand this method we �rst need to introduce some de�nitions from di�er-

ential geometry.

De�nition 1
The tangential gradient of a function f, which is di�erentiable in an open neighbourhood of
�, is de�ned by

∇ f (x)=∇f (x)− (n̂(x) · ∇f (x))n̂(x); x∈�
Here, ∇ denotes the usual gradient in Rd.

De�nition 2
If f is two times di�erentiable in a neighbourhood of �, then we de�ne the Laplace–Beltrami
operator of f as

	 f (x)=∇ · (∇ f (x)); x∈� (2)

Lemma 1
A theorem of di�erential geometry now states that

	id� =�n̂ (3)

where � is the mean curvature and id� is the identity mapping on �. For the proof we refer
to basic textbooks in di�erential geometry such as Reference [11].

To transform the surface tension term (1) to its variational equivalent, which is the basis of
a �nite element discretization, we start by multiplying it with a suitably chosen test function
space v and integrate over � which yields

fst =
∫
�
��n̂ · v�(�;x) dx=

∫
�
��n̂ · v d� (4)

Here we have also embedded the delta function in the integral to simplify the expressions.
Using relations (2) and (3) with Equation (4) and partial integration now gives us the
following:

fst =
∫
�
��n̂ · v d�=

∫
�
�(	id�) · v d�

=−
∫
�
�∇id� · ∇v d� +

∫
�
�@�id� · v d� (5)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:659–672



662 S. HYSING

where the boundary term @�id� = n̂� is acting on the tangent line �, given by the intersection
between the interface � and boundary of �, in the direction tangential to the interface. This
term will only appear if our integration path does not posses a closed shape and v is non-
vanishing on �.
Time integration. The most common way of discretizing the surface tension forces in time is
explicit integration. The surface tension forces are evaluated for the interface at the previous
time step and added to the right-hand side as a source term, that is

fst =
∫
�n
��nn̂n · v d� (6)

= −
∫
�n
�∇(id�)n · ∇v d� (7)

where a superscript n denotes the old time level (with boundary terms omitted). This will
impose a limit on the time step by introducing a numerical capillary time scale

	t(ca)num¡

√
〈�〉h3
2��

(8)

where h is the mesh size and 〈�〉 is the average �uid density at the interface [2]. As can be
seen this constraint is rather restrictive for high mesh densities (scaling like h3=2) and also
large coe�cient of surface tension (scaling like �−1=2).
Following the work of B�ansch [4, 5] we can lift this restriction by using a semi-implicit

time discretization. This is accomplished by writing the new interface position as a function
of the old position

(id�)n+1 = (id�)n +	tn+1un+1 (9)

where 	tn+1 = tn+1 − tn is the time step and un+1 is the velocity �eld at the new time level.
This results in the following representation of the surface tension e�ects:

fst =−
∫
�n
�∇(id�)n · ∇v d�−	tn+1

∫
�n
�∇un+1 · ∇v d� (10)

The new term compared to Equation (7) is linear with respect to the velocity at time level n+1
and can thus simply be assembled as a positive de�nite contribution to the iteration matrix.
This approach is also a little bit simpler compared to the earlier e�orts by Hochstein and
Williams [12], which essentially required the normals and curvature to be written implicitly,
that is

n̂n+1 ≈ n̂n +	t
(
@n̂
@t

)n
; �n+1 ≈ �n +	t

(
@�
@t

)
≈ �n −	t∇ ·

(
@n̂
@t

)n
The clear advantage the semi-implicit discretization (10) has over a pure explicit one is

that the additional term represents a di�usion operator working in the tangential direction
of �. This results in a more physical implementation of capillary e�ects since an increased
coe�cient of surface tension now generates more interface di�usion, that is a sti�er system,
instead of a larger destabilizing source term.
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2.2. Fully implicit surface tension force

Having arrived at the semi-implicit expression in time for the surface tension force we would
now like to combine it with the CSF framework, which would enable us to work fully implicit
in space while retaining the stabilizing e�ect. To do this we go back to Equations (4) and
(5) but now keep the delta function in the expressions

fst =
∫
�
��n̂ · v�(�;x) dx=

∫
�
�(	id�) · (v�(�;x)) dx

=−
∫
�
�∇id� · ∇(v�(�;x)) dx = −

∫
�
�∇id� · ∇v�(�;x) dx

Applying the semi-implicit time integration (9) now gives

fst = −
∫
�
�∇(id�)n · ∇v�(�n;x) dx −	tn+1

∫
�
�∇un+1 · ∇v�(�n;x) dx

The �nal step is to substitute the singular Dirac delta function � with its regularized counterpart
�U, after which we arrive at the following expression for the surface tension force:

fst =
∫
�
��U(�n;x) ∇(ĩd�)n · ∇v dx+	t

∫
�
��U(�n;x)∇u · ∇v dx (11)

where ĩd� is the extension of the interface over the support of �U with width 2�.
Assuming that it is possible to �nd an implicit way to construct the regularized delta

function in Equation (11), we have then achieved a fully implicit formulation for the surface
tension force, which should not be bounded by the capillary time step restriction (8).

2.3. Regularization of the Dirac delta function

The surface tension force integral in Equation (4) does not need to be evaluated explicitly over
the interface itself. Of course this approach will be the most accurate one, however a major
drawback is that the interface has to be explicitly found, which can be quite a di�cult and
imprecise task for higher-order schemes, and especially in three dimensions. By regularization
of the singular Dirac delta function we have the possibility of evaluating the singular terms
implicitly.
The Dirac delta function is de�ned as∫

Rd
�(�;x)f(x) dx=

∫
�
f(X(S)) dS

where X(S)∈�. To regularize this function in higher dimensions we can follow two ap-
proaches, the �rst is to use the method of Peskin [13] and construct �U by multiplication of
d one-dimensional regularized delta functions

�U(�;x)=
∫
�

d∏
k=1
��k (x

(k) − X (k)(S)) dS
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664 S. HYSING

This approach however does not let us escape from the explicit localization of the interface
since X(S)= (X (1)(S); : : : ; X (d)(S)) are points on the interface �. Fortunately there is another
path open to us, and that is to construct �U from a distance function

�U(�;x)= ��(dist(�;x))

where dist(�;x) gives the minimum distance from x to �. The regularized continuous delta
function �� is de�ned as

��(x)=

⎧⎨
⎩
1
�
’m(x=�) |x|6 �=mh
0 |x|¿�=mh

where h is the mesh spacing which together with the constant m de�nes the support � of the
regularized delta function. Some of the most common choices for the kernel function ’ are
the linear hat function

’(	)=1− |	|
the commonly used cosine function introduced by Peskin

’(	)= 1
2(1 + cos(�	))

and polynomials of various degrees of which one example is

’(	)= 35
32 (1− 3	2 + 3	4 − 	6) (12)

The task is now to construct an appropriate distance function, which can be done explicitly.
A more attractive alternative however is to use the level set method to track the interface.

2.4. Level set method

The main idea is to assign �(t) as the zero level set embedded in a higher-dimensional
function 
, that is,

�(t)= {x∈Rd |
(x; t)=0}
The level set function 
 is generally described (or at least initialized) as a signed distance
function d from the interface


=d(�;x)=

⎧⎪⎪⎨
⎪⎪⎩
dist(�;x); x∈�1
0; x∈�
−dist(�;x); x∈�2

The evolution of 
, and thus also implicitly the interface, can be posed as a general transport
problem

@

@t
+ F |∇
|=0

where F is a speed function dictating the rate of change of � in the normal direction. F will
only depend on the velocity �eld u for the considered multiphase �ow applications.
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3. NUMERICAL EXAMPLES

In this section we present the results from computational simulations highlighting the perfor-
mance of the new surface tension implementation variant (11), which we label CSF-LBI. The
new method is compared to the standard explicit method labelled CSF (6).
The tests were performed with the �nite element �ow solver package FEATFLOW [14]

extended to incorporate interfacial �ow with the level set method. The �ow variables were
discretized with non-conforming Q̃1Q0 basis functions and solved with the discrete projection
method. This decouples the velocity from the pressure and allows for e�cient solutions via
multigrid. The momentum equations were also stabilized with streamline di�usion (SUPG) to
handle convection dominated situations.
The level set solver employed a continuous Q1 approximation with FEM-TVD [15] to

stabilize the pure transport equation. Normals and curvature were reconstructed from the level
set function with gradient recovery (ZZ-technique [16]), which leads to better approximation
of geometrical quantities. After each time step the level set �eld was reinitialized with the fast
marching method [17]. Height correction (as described in Reference [18]) was also applied
to ensure mass conservation. To regularize the delta function the polynomial (12) was used
with m=1:5.
For the time integration a second-order Crank–Nicolson scheme was used. The dependent

variables were solved sequentially after each other in each time step according to the following
scheme.

1. Solve the momentum equations with surface tension.
2. Solve the pressure Poisson equation.
3. Update the pressure and velocity.
4. Solve the level set equation.
5. Reinitialize the level set �eld.
6. Apply mass correction to the level set �eld.

3.1. Static bubble

This test case models a perfectly stationary circular bubble at equilibrium. According to the
Laplace–Young law the pressure inside the bubble is equal to pin =pout +�=r, where r is the
radius of the bubble. Since everything is stationary we should ideally have a zero velocity
�eld but due to certain imbalances in our numerical method spurious velocity currents will
be generated.
To have a comparison we follow the con�guration given in Reference [18], which is a

bubble with radius r=0:25 positioned in the centre of a unit square. The coe�cient of
surface tension and all viscosities were set to unity while densities were given a magnitude
of 104. This corresponds to a Laplace number of La=(2r)���−2 = 5× 103. A �xed time step
of 	t=0:01 was used, and computations were performed until t=125.
Tables I and II show the error of the dimensionless velocity for the di�erent methods in l∞

and l1 norms de�ned as maxi |ui�=�| and 1
N

∑N
i=1 |ui�=�|, respectively, where N is the number

of nodes. The results with PkP1 discretization are reprinted from Reference [18]. From the
comparisons we can conclude that the errors are of the same order or even a little bit better
than those given by Smolianski. Also the new CSF-LBI method proved to be marginally more
accurate than the standard CSF method.
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Table I. The error and convergence rate (EOC) in the discrete l∞ norm for
the non-dimensional velocity u�=�.

1=h P1P1 Pb1P1 P2P1 Q̃1QCSF
0 Q̃1QCSF-LBI

0

20 1:4× 10−2 1:5× 10−2 2:2× 10−2 7:4× 10−3 6:9× 10−3

40 9:1× 10−3 9:2× 10−3 1:3× 10−2 3:9× 10−3 3:7× 10−3

80 5:0× 10−3 4:2× 10−3 9:7× 10−3 2:0× 10−3 1:8× 10−3

160 9:8× 10−4 8:1× 10−4

EOC ≈ 0.8 0.9 0.6 1.0 1.0

Table II. The error and convergence rate (EOC) in the discrete l1 norm for
the non-dimensional velocity u�=�.

1=h P1P1 Pb1P1 P2P1 Q̃1QCSF
0 Q̃1QCSF-LBI

0

20 6:9× 10−4 8:6× 10−4 1:1× 10−3 6:7× 10−4 5:8× 10−4

40 1:8× 10−4 2:3× 10−4 3:5× 10−4 1:9× 10−4 1:6× 10−4

80 4:7× 10−5 5:9× 10−5 1:0× 10−4 5:2× 10−5 4:1× 10−5

160 1:4× 10−5 1:0× 10−5

EOC ≈ 1.9 1.9 1.7 1.9 2.0

Table III. Absolute (top) and relative (bottom) errors in the Laplace–Young law.

1=h PkP1 Q̃1QCSF
0 Q̃1QCSF-LBI

0

|pin − pout − �=r|
20 2:0× 10−2 4:8× 10−2 6:1× 10−3

40 2:0× 10−3 1:2× 10−2 3:5× 10−3

80 6:0× 10−4 3:1× 10−3 1:0× 10−3

160 7:8× 10−4 2:7× 10−4

|pin − pout − �=r|
(�=r)

100%

20 0.5% 1.2% 0.15%
40 0.05% 0.31% 0.088%
80 0.015% 0.078% 0.026%
160 0.020% 0.0066%

Table III shows how well the pressure �eld ful�lled the Laplace–Young law in both
absolute and relative error norms. Overall we can see that the Q̃1Q0 approach with the standard
CSF method does not perform equally well to the PkP1 approach, while the new CSF-LBI
method however gave results on a comparable level. The overall better pressure approximation
of the PkP1 approximation could possibly be attributed to the higher order of the pressure
space. Figure 1 shows pressure cut-lines at y=0:5 for various levels of grid re�nement and as
can be seen the pressure approximation is quite sharp for both CSF methods even on coarse
grids.
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Figure 1. Pressure cut-line (y=0:5) for four di�erent mesh sizes:
(a) CSF; and (b) CSF-LBI.

Table IV. Capillary time step restriction for the standard CSF method applied to the
oscillating bubble example.

Mesh level L1 L2 L3 L4 L5 L6 L7

	t(ca)num 11.3 4.0 1.4 0.5 0.17 0.06 0.02

3.2. Oscillating bubble

In this second more dynamic example we continue with the con�guration used in the previous
example, but now initially perturb the circle to an elliptical shape by scaling the semi-axes a
factor 1:25 in the x-direction and 0:8 in the y-direction. The ellipse or bubble consists of the
same �uid as in the surrounding unit square cavity. The �uid has a density of 104, viscosity
1, and coe�cient of surface tension equal to 0:1. Simulations for various levels of re�nement
of the initial 5× 5 mesh were performed with a �xed time step 	t=5 until t=1000. At the
�nal time the bubble is expected to have reached an equilibrium state that is a stable circular
shape. Theoretically, the capillary time step restriction (8) is already exceeded on the second
mesh re�nement (level 3) as can be seen in Table IV, and instabilities can thus be expected
to appear on this and �ner meshes.
Figure 2 shows the results for the standard CSF method at six representative times for

levels 3–6. As is apparent numerical oscillations start to appear and pollute the solution as
the mesh is re�ned. The new CSF-LBI method however proved to be very stable, and as can
be seen from Figure 3 only the very �nest levels (at 80–250 times 	t(ca)num) show the onset of
oscillations.

3.3. Rising bubble

The �nal test example concerns a bubble rising in a heavier �uid. The bubble is given an
initial radius of r0 = 0:2 and is placed at [0:5; 0:5] in a rectangular domain with dimensions
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668 S. HYSING

Figure 2. Evolution of an oscillating bubble with the standard CSF method.
Re�nement levels 3–7 with 	t=5.

Figure 3. Evolution of an oscillating bubble with the new CSF-LBI method.
Re�nement levels 3–7 with 	t=5.
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Table V. Physical parameters used in the rising bubble example.

�1 (liquid) 104

�2 (gas) 103

�1 (liquid) 1
�2 (gas) 1
gy −8× 10−4

� 0.5

Figure 4. Evolution of a rising bubble with the standard CSF method
with time steps 	t=0:5 and 	t=1:0.

[0; 1]× [0; 2]. No-slip conditions are applied on the horizontal walls and slip conditions on
the vertical ones. Initially, both �uids are at rest having a velocity of zero everywhere.
The physical parameters for the simulation are listed in Table V and correspond to a

Reynolds number Re=(2r0)3=2g
1=2
y �1�−1

1 = 71:6 and E�otv�os number Eo=4�1gyr20�
−1 = 2:56.

According to Clift et al. [19] such a bubble is expected to assume an ellipsoidal shape.
This is valid for fully three-dimensional bubbles but not necessarily for the considered two-
dimensional one, it should however give an indication of the �nal shape that might be found.
The computations were performed on a single 80× 160 mesh where the time step 	t was var-
ied between 0.0125 and 4 to test the stabilizing capabilities of the new surface tension imple-
mentation method. From (8) the estimate of the capillary time step restriction is 	t(ca)num =0:056
indicating possible problems for the larger time step sizes.
Figure 4 shows the results for the standard CSF method at time steps 	t=0:5 and 	t=1:0,

where it can be seen that severe oscillations pollute the solution at the larger time step. Further
increases in time step size resulted in a complete breakdown of the algorithm. It is interesting
to note that it was still possible to perform the simulation although the capillary time step
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Figure 5. Evolution of a rising bubble with the new CSF-LBI method
with time steps 	t=0:5 and 	t=1:0.

Table VI. Averaged number of nonlinear iterations (ANNL), linear multigrid
steps for velocity U (AMGU) and pressure P (AMGP), respectively, for the

rising bubble test case with time steps 	t=0:5 and 	t=0:25.

	t=0.5 	t=0.25
CSF CSF-LBI CSF CSF-LBI

ANNL 4.1 3.6 3 2.6
AMGU 5.2 4.8 3 2.7
AMGP 5.3 5.2 4.6 4.6

restriction was exceeded by almost a factor of 10. Figure 5 in contrast shows the results for
the new CSF-LBI method where both time steps yielded the same qualitative solution. The
method did in fact even work quite well up to 	t=2:0, after which there also appeared too
much distortion in the interface contour. Table VI lists the averaged number of nonlinear
iterations and linear multigrid steps for velocity and pressure at time steps 	t=0:5 and
	t=0:25. The new CSF-LBI method resulted in a slight decrease in the number of nonlinear
iterations and multigrid steps while solving the momentum equations, the multigrid steps for
solving the Pressure Poisson equation were however una�ected.

4. CONCLUSIONS AND OUTLOOK

A fully implicit, with respect to space, Eulerian method to implement surface tension e�ects
has been presented which also is semi-implicit in time. The main idea of the new imple-
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mentation is to combine the continuum surface force (CSF) method with a Laplace–Beltrami
operator working on the variational form of the capillary force. The CSF method ensures
implicitness in space with respect to the interface location and the Laplace–Beltrami operator
enables the surface tension terms to be formulated semi-implicitly in time. The advantage of
using semi-implicit instead of explicit time integration of the surface tension forces is that
it potentially allows for larger time steps with respect to the numerical capillary time step
restriction imposed otherwise.
E�cient implementation of the new method is made possible by using the implicitness

inherent in the level set methodology together with a �nite element discretization in space.
Since existence of a distance function is a natural result of working with the level set method
it is particularly suitable for use in CSF formulations, that is in the construction of approxi-
mations to Heaviside and Dirac delta functions. Another advantage of working with the level
set method is that geometrical quantities are globally available and can easily be recovered
implicitly. The �nite element method, on the other hand, naturally gives us access to the
variational formulation of the equations enabling the subsequent application of the Laplace–
Beltrami operator on the surface tension term.
Three numerical examples were presented to validate the new CSF-LBI method; a static

bubble following the Laplace–Young law, an oscillating bubble, and �nally a rising bubble.
The static bubble test case showed that the new CSF-LBI method gives comparable or even
marginally better accuracy than the standard CSF method. The following two cases, which
tested di�erent time step sizes with respect to mesh re�nement, showed that the new method
clearly has a signi�cant stabilizing e�ect on lessening the capillary time step restriction. This
e�ect was most dramatic for the second purely capillary driven case where the maximum
possible time step was roughly two magnitudes larger than allowed for a purely explicit im-
plementation. In the case of the rising bubble the standard explicit method worked remarkably
well allowing for 10 times larger time step compared to the capillary time step restriction. The
new CSF-LBI method however proved a little bit better being able to use a 20 times larger
time step. For this case it was also shown that the average number of nonlinear iterations and
multigrid steps needed in the solution of the momentum equations were somewhat decreased
with the new implementation method.
The future application of the presented CSF-LBI method to interfacial �ows with

signi�cant topology change (breakup and coalescence) and di�ering �ow conditions will be
investigated rigorously in forthcoming publications. Only then will it be possible to fully
evaluate the performance over a wide range of �ow regimes, and to �nd eventual drawbacks
of the new method. Other interesting aspects to examine is the e�ciency when coupled with
mesh deformation=adaption algorithms and also higher-order �nite element discretizations. The
�nal step would be to move to three-dimensional space which does not pose any additional
conceptual complexities or problems due to the fully Eulerian approach.
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